

Tni-FNL: An Improved Trichoplusia Ni Cell Line for Protein Expression

Summary

Researchers at the National Cancer Institute (NCI) seek licensing for an improved cell line called Tni-FNL which is capable of high level expression of heterologous proteins using baculovirus expression systems.

NIH Reference Number

E-146-2017

Product Type

Research Tools

Keywords

• Tni-FNL, Cell Line, Baculovirus, Protein Expression, Insect Cell, Esposito

Collaboration Opportunity

This invention is available for licensing.

Contact

Rose Freel
NCI TTC

rose.freel@nih.gov (link sends e-mail)

Description of Technology

Researchers at the National Cancer Institute (NCI) have developed an improved insect cell line, Tni-FNL, derived from the cabbage looper, Trichoplusia ni. The Tni-FNL cell line is capable of high level expression of heterologous proteins using baculovirus-based expression systems. When compared to commercially available cell lines used for the same purpose, the Tni-FNL cell line often outperforms those for protein expression. These cells have a high growth rate and are capable of growth at a lower temperature. The complete genome sequence of the Tni-FNL cell line has been determined, opening the door to systems biology approaches to further improve the protein expression capabilities of the cell line.

Potential Commercial Applications

- Research tool for production of protein
- Target organism for advanced systems biology approaches to improve protein

production

Competitive Advantages

- In side-by-side comparisons with other insect cell lines, this cell line outperforms for protein production for several different proteins tested
- Cell line has a highly robust growth rate, including at lower temperatures
- Cell line genome sequence was determined to a coverage and accuracy far exceeding any other lepidopteran cell line or host organism

Inventor(s)

Dominic Esposito, Ralph Hopkins, Veronica Roberts

Development Stage

Prototype

Publications

Gillette WK, et al. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. (PMID: 26522388) [PMID: 26522388]

Patent Status

• Research Material: NIH will not pursue patent prosecution for this technology

Related Technologies

• E-009-2015 - Improved Production of Prenylated Protein in Insect Cells

Therapeutic Area

• Cancer/Neoplasm

Updated

Tuesday, September 13, 2022

Source URL: https://techtransfer.cancer.gov/availabletechnologies/e-146-2017